

What are the aims and intentions of this curriculum?

AQA Combined Science Trilogy is taught at the Parkside Studio College as one of the core subjects at KS4. It equips students with skills and knowledge transferable to both educational and career settings and provides a worthwhile course for students of various ages and from diverse backgrounds in terms of general education and lifelong learning. The units covered in this scheme of work are unit two: chemistry, biology and physics. The knowledge and skills ascertained throughout the study of the course will prepare students for careers in STEM.

Term	Topics	Knowledge and key terms	Skills developed	Assessment
Autumn 1	The nervous system, hormonal coordination, homeostasis, Reproduction, Genetics,	 Structure and function of the nervous system Response to stimuli Reflex action Synapse Homeostasis Structure and function of the human endocrine system Hormones Control of blood glucose concentration Hormones in human reproduction Contraception Hormones to treat infertility Negative feedback mechanism Sexual and asexual reproduction Gametes and fertilization Sex determination DNA, chromosome, gene and genome Genetic inheritance and inherited genetic disorder Gamete, genotype, phenotype, homozygous, heterozygous, allele, dominant allele, recessive allele Genetic engineering Ethics and concerns about genetic engineering 	 Practical and enquiry skills: Plan, analyses and present results from experiment relating to the nervous system Communication: Role play the reflex arc Practical and enquiry skills: Plan an experiment to test for diabetes and evaluate the old approach of doctors tasting urine to determine if patient has diabetes Communication: Debate the ethics of contraception Scientific Communication: Use models to explain the process of meiosis Scientific Communication: Complete Punnett squares and genetic crosses. Interpret the results and describe the offspring. Communication: Debate the ethics of genetic engineering Practical and enquiry skills: Extract DNA from fruit Scientific Communication: Use Punnet's squares to interpret results on progeny 	 Teacher: End of Unit test, kerboodle test and quiz Self: Past paper question, worksheet, project Peer: Class worksheet , portfolio, assignment, presentations, models

			 PSHE/RSE Brooks Education workshop on contraception, sexual orientation and sexual health Case study on the risk factors for type 2 diabetes Careers/Enrichment Springpod Virtual work Experiences STEM Toolkit Research on STEM careers in neuroscience, genetic engineering, embryology. Trip to the Science museum and natural history museum. Trip to the Centre of the cell STEM black history month presentation. 	
Autumn 2	variation, evolution, organizing an ecosystem, biodiversity and ecosystem, forces in balance, motion, forces and motion	 Variation Selective breeding Evolution of species by natural selection Mutations Evidence for evolution – fossils and resistant bacteria Extinction Classification Carl Linnaeus binomial system of naming organism Carl Woese three domain system of classification Ecosystem, community, interdependence, biotic factors, abiotic factors, competition, stable community, habitat Distribution of species Adaptations of organisms for survival 	 Practical and enquiry skills: Class survey and report Measure variation in plant a species Scientific Communication: Produce a model to represent selective breeding Communication: Write essay on the pros and cons of selective breeding Practical and enquiry skills: Field investigation Scientific Communication: Use models to describe material cycling 	 Teacher: End of Unit test, kerboodle test and quiz, end of term examination Self: Past paper question, worksheet, project Peer: Class worksheet , portfolio, assignment, presentations, models

Extremophiles	Scientific Communication: Use models and graphs	
Levels of organization in an ecosystem	to describe vector and scalar	
Feeding relationship		
Material cycles	Practical and enquiry skills: investigate contact and	
Biodiversity	non-contact forces	
Waste management		
Land use and deforestation	Practical and enquiry skills: measure the weight and	
Global warming	mass of an object and convert from mass to weight	
Maintaining biodiversity	and weight to mass.	
Scalar and vector guantity		
Contact and non-contact forces		
 Weight and gravitational field 	Practical and enquiry skills: Plan experiment to calculate speed of an object	
 Calculating the weight of an object 		
Resultant force		
Calculating resultant force for components acting	Practical and enquiry skills: required practicals on	
at right angle	acceleration	
Elastic and inelastic deformation	Communication, some some foresser using discusses	
Hooke's Law	communication: represent forces using diagrams	
Distance and displacement	Practical and enquiry skills: required practical on	
Speed and velocity	Hooke's law	
 Calculating speed using formula 	TIOORE STAW	
Rearrange speed formula to find time or distance		
travelled	Communication : represent the motion of objects on	
Distance-Time graphs	graphs	
Acceleration		
Calculating acceleration using formula		
 Velocity-Time graphs 	Practical and enquiry skills: Design a parachute for	
Equations of motion for uniform acceleration	free falling object	
Falling under gravity	PSHE/RSE	
Newton first law of motion	Research the effect drugs and alcohol	
 Newton second law of motion 	on thinking and stopping distances.	
Equation for newton second law of motion	Analayse case study on motor vehicle	
Inertial Mass	accidents due to drugs and alcohol use	
 Newton's third law of motion 	accidents due to drugs and accident use.	
Thinking distance, braking distance, stopping	Careers/Enrichment	
distance		
Momentum	• Springpou virtual work experiences	
Conservation of momentum		
	Science Museum	
	Jeremy king Engineering Project	

Spring 1	Wave properties Electromagnetic waves Magnetism Electromagnetism Crude oil and fossil fuel Chemical analysis	 Features of transverse and longitudinal waves Properties of waves Amplitude, frequency, period, peak, trough, wavelength Wave equation Electromagnetic spectrum Radio waves, gamma waves, X-ray, microwaves and ultraviolet waves Uses of Electromagnetic waves Magnetic force Magnetic field Magnetic field around a current carrying wire Magnetic field around a solenoid The motor effect Flemming's left hand rule Crude oil Hydrocarbon Fractional distillation Flammability, boiling point, viscosity and volatility of hydrocarbons Alkanes Cracking Alkene 	 Scientific Communication: Draw diagram of waves Practical and enquiry skills: investigate waves in a ripple tank Practical and enquiry skills: find the speed of sound using echo Practical and enquiry skills: investigate infrared radiation Communication: draw ray diagrams Scientific Communication: Research electromagnetic waves Practical and enquiry skills: investigate the magnetism Practical and enquiry skills: Use molymods to make models of hydrocarbons Practical and enquiry skills: Investigate cracking of hydrocarbon Practical and enquiry skills: investigate the products of combustion 	 Teacher: End of Unit test, kerboodle test and quiz Self: Past paper question, worksheet, project Peer: Class worksheet portfolio, assignment, presentations, models
Spring 2	The Earth's atmosphere, The Earth's resources, using our resource	 Proportion of gas in the atmosphere Theory on the early Earth's atmosphere Greenhouse effect Greenhouse gases Carbon footprint Atmospheric pollutants Use of Earth's resources Finite and infinite resources Pure water and potable water Sewage treatment 	 Scientific Communication: Make models to show the proportion of gases in the atmosphere Scientific Communication: Use posters to represent theories of early Earth Communication: write an essay putting forward arguments for and against global climate change Practical and enquiry skills: Analysis and purification of water sample 	Teacher: End of Unit test, kerboodle test and quiz, end of term examination Self: Past paper question, worksheet, project Peer: Class worksheet , portfolio,

Metal oresLife cycle assessment	Communication: research water purification	assignment, presentations, models
	Communication: research metal ores and the extraction of metal from low grade ore Careers/Enrichment • Springpod Virtual work Experiences • STEM Toolkit • Thames water workshop • Science museum	